A new series of chiral porous molecular layered magnets with tunable T_c

Carlos J. Gómez-García, Samia Benmansour, Miguel Clemente-León, Guillermo Minguez-Espallargas, Alexandre Abhervé, Patricia Gómez-Claramunt1, Matteo Atzori, Maria Laura Mercuri2

1Instituto de Ciencia Molecular, Universidad de Valencia, C/ Catedrático José Beltrán, 2, 46980 Paterna, (Spain)

2Dipartimento di Scienze Chimiche e Geologiche, Universit degli Studi di Cagliari, Monserrato, (Italy)

Email: carlos.gomez@uv.es

Here we will present the synthesis of a novel series of chiral molecule-based ferrimagnets obtained with di-substituted anilato ligands [$X_2C_6O_4$]$^{2-}$ ($X = H, Cl, Br, I$) and different cations, formulated as $A[M^{III}M^{II}(X_2C_6O_4)_3]G$ ($A^+ = NBu_4^+$, $\Delta -[(Phez)_3(H_3O)]^+$; $M^{III} = Cr$ and Fe; $M^{II} = Mn$, Fe, Co, ...; $X = H$, Cl, Br and I; $G = CH_3COCH_3$, H_2O). This family of porous magnets presents void hexagonal cavities with ca. 291 Å3 for $X = Cl$ (ca. 20% of the unit cell volume) where the solvent (G) molecules are located. Besides chirality and porosity this series present long range ferrimagnetic orderings with ordering temperatures of 5.5 to 6.3, 8.2 and 11.0 K for $X = Cl$, Br, I and H, respectively. We will show the relationship between the electronegativity of the substituent group X and the ordering temperature, T_c. This series constitutes, thus, the first structurally and magnetically characterized series chiral porous molecule-based 2D magnets whose ordering temperatures can be easily tuned. Finally, we will present the great potentialities of these series of layered magnets for the preparation of multifunctional molecular materials by insertion of other cations with different functionalities as spin crossover.