Layered organic superconductors of the BEDT family offer a unique opportunity to explore the interplay between superconductivity, antiferromagnetism and interaction-induced (Mott) metal-insulator transitions. Theoretical studies based on the Cluster version of Dynamical Mean-Field Theory for the Hubbard model [1,2] lead to some insights on these problems. In this talk, I will introduce the model, the method and its predictions for the phase diagram of the BEDT organics. In particular, the connection to the phase diagram of the high-temperature superconductors will be discussed. [3,4] Finally, after a general discussion of the Mott transition, I will focus on critical phenomena near the critical point of this transition. Given the quantum nature of the two phases involved in the transition, one may ask whether the observed unconventional exponents could arise as transient quantum behavior preceding the asymptotic critical behavior. Our results show instead that there are important subleading corrections to the mean-field critical behavior that must be taken into account. [5]