Modeling multi-orbital molecular conductors

Hitoshi Seo
Condensed Matter Theory Laboratory, RIKEN, Saitama 351-0198, Japan
Email: seo@riken.jp

We theoretically study molecular conductors in which multiple molecular orbitals (MO) are involved. In metal complex molecules described as $M(L)_2$, where a metal atom M is bonded between two ligand units L, the energy gap between frontier MO becomes small, and then in the crystal, energy bands originated from different MO can overlap. We have proposed a scheme of constructing tight-binding models for such multi-MO systems, M(tmdt)$_2$ [1] and X[Pd(dmit)$_2$]$_2$ [2], based on first-principles band calculations; namely, to choose the basis functions as linear combinations of MO, which are more localized in space, called fragment-MO. This scheme enables us to systematically understand electronic structures of different materials, as well as to investigate effects of electron-electron Coulomb interaction in a natural way. Mean-field studies give a variety of phases including, in addition to conventional ordering seen in single-orbital systems, spin/charge ordering where the multiple MO degree of freedom is involved.